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The form of a crystal of anthracene was determined by calculating from the atom-atom potentials the 
surface energies of all planes having simple indices and by drawing out a Wulff plot. Good agreement 
is obtained between the theoretical form and that of real crystals grown from solution. 

Introduction 

The relationship between the internal structure of a 
crystal and its external habit was first expressed by A. 
Bravais, who emphasized the importance of crystal 
planes of high density. The significance of the atomic 
array in determining crystal habit was then shown by 
Kossel (1928), Stranski (1928), Hartman (1958) and 
others. There were also several attempts at correlating 
crystal habit with surface free energy when plotted in 
spherical coordinates [Wulff's plot or '7 plot' (Wulff, 
1901; Yamada, 1924; Herring, 1950)]. Hartman & Per- 
dok (1955) introduced the periodic bond chain method 
which serves as a preliminary investigation before an 
exact calculation of surface energy is carried out. Wulff 
& Gualtieri (1962) showed that differences between ex- 
perimental and derived habits yield specific informa- 
tion with regard to the nature of adsorption, surface 
lattice deformation, and the character of bonding. In 
all this work there was no possibility of the calculation 
of exact values of surface energy since a method of 
calculating the internal forces was lacking. The intro- 
duction in chemical organic crystallography of the 
method of a tom-a tom potentials made possible the 
calculation of several properties (Kitaigorodsky, 
1970). In this work the exact values of surface energy 
have been calculated and the geometrical form of the 
crystal of anthracene has been derived. Anthracene 
was chosen as it has a simple molecule containing only 

carbon and hydrogen atoms, the interactions of which 
are known. Moreover the structure is known to a high 
degree of accuracy. 

Calculation of the potential energy of nucleation 

Any crystallization operation can be considered to 
consist of three steps: 

(1) achievement of supersaturation. 
(2) formation of crystal nuclei, 
(3) growth of crystals, 

The formation of crystal nuclei is a difficult process: 
not only do the constituent molecules have to coagu- 
late, resisting the tendency to redissolve, but they have 
to become orientated into a fixed lattice. Most prob- 
ably, the mechanism of nucleation is as follows: minute 
structures are formed, first from the collision of two 
molecules, then from that of a third with the pair, and 
so on. Short chains or fiat monolayers may be formed 
initially and eventually the lattice structure is built up. 
The most probable factor that influences the choice of 
molecules for coagulation is the binding energy. 

For simplicity of calculating the potential energy of 
nucleation, the following model was assumed. 

(a) The initial state is an ideal gas. 
(b) Molecules are arranged from the very beginning 

according to the crystal lattice but not necessarily 
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with the lattice dimensions of the grown crystal as 
separating distances between them. 

(c) The molecules which are preferred for addit ion one 
by one to the original molecule are those which 
keep the energy of the system to a minimum. 

Crystals of anthracene are monoclinic with the follow- 
ing unit cell dimensions" a =  8.562, b = 6.038, c =  11.184 
A , / ~ =  124042 ' (Mason,  1964). 

There are two centrosymmetric molecules in the 
unit cell, ar ranged according to the space group P21/a 
with their centres at 0,0,0 and ½,½,0. The molecule at 
the origin was taken as the basic molecule to which 
others will coagulate. The energies between this mole- 
cule and all others surrounding it were calculated in- 
dividually, searching for the molecule which will join 
the first. The molecule at ½,½,0 was found to be the 
one which has an interaction energy less than others 
nearby.  These two molecules were then taken as a 
basic system to which a third one was added and so on. 
In all calculations variation of  the unit cell dimensions 
was considered, but the orientation of  the molecule in 
the unit cell as given by Mason  (1964) was not changed. 

The energy 
U= - Ar-6 .q_ Be-=,, (1) 

was calculated using the constants A, B, c~ given by 
Kita igorodsky (1966). U is the mutual  energy of  all 
interacting atoms of a system of N molecules, divided 
by N. Table 1 gives the values of  U and the correspond- 
ing unit cell dimensions. Fig. 1 shows the order of  ad- 
ding molecules and the resulting shape after 25 mole- 
cules have been assembled. It must be mentioned that  
the positions of some molecules were not unique; some- 
times more than one position gave the same energy, 
but  the resulting final shape (Fig. 1) is the same. Fig. 2 
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Fig. 1. Order of addition of molecules and the resulting shape 
after 25 molecules have been assembled. 
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Fig.2. Relation between the number of molecules N and the 
corresponding energy U. 

shows the relation between the number  of  molecules N 
and the corresponding energy U. The calculation was 
stopped after adding 25 molecules because the energy 
per molecule reached a steady value as shown in Fig. 2. 
After  such a number  of  molecules the potential energy 
of  the system has a value between the extreme values 
of  energy obtained after adding various numbers  of  
molecules to the system, i.e. the energy is fluctuating 
around the constant  value shown in the Figure. The 
calculation of  the dimension of  the nucleus is not  pos- 
sible by the method described; but  the number  25 
gives an idea of  the smallest size of  nucleus that  exists 
during crystallization. As is shown in Fig. 1 all mole- 
cules are in the a-b plane. Arrangement  in the third 
direction could not be achieved according to the pro- 
posed rule of  minimum energy. This result is quite 
understandable as it is known that  crystallization oc- 

Table 1. Values of  U and corresponding unit cell 
dimensions 

U(Kcal. 
N mole -1 ) a(/~) b(/~) 
2 - 2.77 8.295 6"390 
3 - 5.18 8"665 5"860 
4 - 6.71 8.670 5"860 
5 - 7.43 8-573 5-863 
6 - 8.11 8-560 5"868 
7 - 8.47 8-552 5"895 
8 - 9.43 8-610 5-855 
9 - 9.67 8.545 5.895 

10 - 9.77 8.605 5-847 
11 - 10.36 8.602 5"845 
12 - 10.48 8.540 5.890 
13 - 10"51 8.597 5"840 
14 - 10.91 8.597 5"853 
15 - 11.28 8.600 5.843 
16 - 11.30 8.597 5.840 
17 - 11.28 8.595 5-865 
18 - 11"55 8-600 5-840 
19 - 11.80 8.535 5-870 
20 - 11.80 8.590 5.840 
21 - 11"77 8.595 5-835 
22 - 11"97 8"590 5-845 
23 - 12.17 8.590 5.840 
24 - 12-35 8.595 5.840 
25 - 12"33 8.590 5"840 
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curs in three dimensions only in the presence of lattice 
defects. 

However, the resulting two dimensional shape shown 
is in agreement with the experimental crystals described 
by Groth (1919) as plates containing the a and b axes 
with the faces {001}, {110}, {201} and sometimes {llT} 
as the most common forms. 

Another method for obtaining the form of the crys- 
tal was tried: namely calculation of the surface energy. 

Surface energy calculation 

Gibbs (1928) found that the crystal is in equilibrium 
with its own vapour phase when for a constant volume, 
its total surface energy is a minimum: 

~ atA~ = minimum 
i 

where At is the area of the ith face of a crystal bounded 
by n faces and at is the surface free energy per unit area 
of the ith face. Wulff (1901) showed that this statement 
is equivalent to the equation: 

O'1 O'2 a t  

hi  h2 " " h t  
-- constant 
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Fig. 3. (010) Projection of Wulff plot. The dotted lines show the 
directions of normals. 
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Fig. 4. Resulting form of the crystal. 

where ht = central distance of the ith crystal face. Gibbs 
pointed out that a crystal will assume the equilibrium 
form only when it is of microscopic dimensions. Mac- 
roscopic crystals, which are growth forms, possess the 
same planes as the equilibrium forms (Stranski & Kai- 
shev, 1935). Only the relative sizes of the various planes 
usually differ in the two forms. 

A crystal equilibrium form may be derived by vary- 
ing the central distance of each crystal plane until each 
distance is proportional to the specific surface energy 
(Stranski, 1965) (Wulff's method). Wulff's method in 
two dimensions uses a polar diagram of the specific 
surface energy of the various planes which belong to 
a particular zone. The crystal form which corresponds 
to the lowest surface energy may be obtained by select- 
ing the planes enclosing the smallest area. The respec- 
tive planes are orthogonal to lines drawn from the 
origin, and intersect these lines at distances propor- 
tional to the specific surface energy of the specific plane. 
In three-dimensional representation the specific sur- 
face energies at of all planes are plotted in spherical 
coordinates. 

The specific surface energy at is defined as being half 
the energy per unit area required to separate the crys- 
tal along the ith plane. According to this definition 
the energy must be positive if the energy is calculated 
according to equation (1). The summation was carried 
out on all interactions between the constituents of a 
unit of repetition in the specific plane and the con- 
stituent atoms of all other molecules at one side of that 
plane. As an example, for the plane (100), the interac- 
tions between the repeated unit containing the mole- 
cules (1), (4) and (21) (Fig. 1) and all molecules (in- 
cluding those in the third dimension) above the line 
showing the direction of the b axis, were considered. 
Half this energy was then divided by the area of that 
plane. The calculated values of at for planes of simple 
indices using the lattice parameters and atomic coor- 
dinates given by Mason (1964), are shown in Table 2. 
The equilibrium form was derived using Wulff's 
method by drawing several projections of the three- 
dimensional representation of the energies at of these 
given planes. As an example one projection is shown 
in Fig. 3. It is clear that although some planes have 
approximately equal energies, the directions of their 
normals influence the areas of their faces. Fig. 4 shows 
that the resulting form of the crystal is a plate con- 
taining the axes a and b with the biggest face as (001). 

Table 2. Calculated values of ai for planes of simple 
indices using the lattice parameters and atomic coordi- 

nates given by Mason (1964) 

Plane a erg.cm -2 Plane a erg.cm-2 
100 87.98 201 90.14 
010 117-50 20T 91.94 
001 75.70 021 111.70 
110 90-34 111 98.87 
011 103.20 11T 105.50 
101 90.80 112 94.20 
10T 119.25 11~ 122.00 

A C 28A - 8 
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The presence of more planes in this derived equilibrium 
form than the growth form described by Groth (1919), 
is quite normal. This difference is probably due to the 
velocity of growth of crystals in solutions. 

The authors wish to express their thanks to Dr K. V. 
Mirskaya for her kind assistance and to Dr Yu. T. 
Struchkov for his interest in the work undertaken. 
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A least-squares technique for direct refinement of the phases of structure-factors of crystals which obey 
the equations a,Fh= ~FkFh-k is described. It is shown by tests carried out under somewhat idealized 

k 
conditions that the initial phases need not be of a completeness or accuracy sufficient to resolve the 
atoms of the structure. The technique may be able to provide a bridge in protein crystallography and 
structure determination generally between preliminary phasing techniques and final refinement of atom 
parameters. 

The refinement techniques in current use in crystallo- 
graphy (least-squares refinement of atomic parameters, 
Fourier refinement of atomic parameters and phases 
simultaneously) have the property that they cannot 
commence until the structure determination has pro- 
gressed to the point where an approximate set of atom 
parameters, or equivalently a set of phases sufficiently 
complete and accurate to yield a Fourier map from 
which such parameters can be read off, is available. Fre- 
quently, however, a less complete and accurate set of 
phases will be available at an earlier point in the deter- 
mination. In protein crystallography, for example, 
phases to 3-0-2.5 A resolution can be obtained by the 
method of multiple isomorphous replacement (m.i.r.). 
It may also be noted that Hauptman (1969) and Karle 
(1970) have given procedures which from the observed 
magnitudes alone produce rough approximations to 
the phases for any structure. Thus a refinement tech- 
nique which operated directly on phases rather than 
on atom parameters, and which was able to com- 
mence from an initial set of phases of less than atom- 
resolution quality, could be an important aid in com- 
pleting protein structures and perhaps in determining 
structures generally. 

In the present paper we consider, as a possible tech- 
nique of this kind, minimization of the expression 
~la~F~-~FkFh_kl'- as a function of the phases. This 
h k 
minimization may be regarded as a reciprocal-space 
analog of the ordinary least-squares refinement of atom 
parameters. Starting with an initial set {~0 °} of phases 
the process generates a sequence of approximations 
{~0~}, {~0~}, . . .  tending toward the set {~0j} at which the 
function is a minimum. Preliminary tests of the method 
conducted under partially realistic conditions are re- 
ported to show that the final set {~0j} can indeed be 
adequately close to the set {q~j} of true phases and that 
convergence to {rpj} can occur even when the initial 
set {~0~} is considerably below atom-resolution quality. 
{~0j} may alternatively be thought of as a least-squares 
solution of the equations 

a~F~= E &F~_~ (1) 
k 

(Sayre, 1952) without the usual approximation in- 
volved in replacing equation (1) by its corresponding 
set of triple-product relationships. 

We may pause briefly to put the present technique 


